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Abstract—For complicated classification problems, the stan-
dard Support Vector Machine (SVM) is likely to be complex and
thus the classification efficiency is low. In this paper, we propose
a new efficient SVM (eSVM), which is based on the idea of
minimizing the margin of misclassified samples. Compared with
the conventional SVM, the eSVM is defined on fewer support
vectors and thus can achieve much faster classification speed
and comparable or even higher classification accuracy. We then
present a real-time accurate eye localization system using the
eSVM together with color information and 2D Haar wavelet
features. Experiments on some public data sets show that (i)
the eSVM significantly improves the efficiency of the standard
SVM without sacrificing its accuracy and (ii) the eye localization
system has real-time speed and higher detection accuracy than
some state-of-the-art approaches.

I. INTRODUCTION

S
UPPORT Vector Machine (SVM) has been widely applied

in pattern recognition and object detection. The standard

SVM exhibits many theoretical and practical advantages such

as good generalization performance. However, when applied

to complicated large-scale classification problems, its decision

function is likely to be over complex that will lead to low

computational efficiency. Much research has been carried out

to simplify the SVM classification model and some simplified

SVMs have been presented. Burges [1] proposed a method

computing an approximation to the decision function in terms

of a reduced set of vectors and decreasing the computation

complexity of decision function by a factor of ten. Soon it

was applied to handwritten digits recognition in [2] and face

detection in [3]. However, this method does not only decreased

the classification accuracy but also increased the computation

cost to build up decision function since the computation

of the optimal approximation costs much. Then a Reduced

Support Vector Machine (RSVM) as an alternative of the

standard SVM was proposed in [4] and developed in [5]. The

authors generated a nonlinear kernel based separating surface

(decision function) by solving a smaller optimization problem

using a subset of training samples. RSVM successfully reduce

the model’s complexity but it also reduce the classification

rate. In [6], a new SVM, named υ-SVM, was proposed. The

relationship among the parameter υ, the number of support

vectors, and the classification error was thoroughly discussed.

However, this method would reduce the generalization perfor-

mance when the parameter υ is too small. In 2007, Jayadeva

and Khemchandani [7] proposed a TWIN SVM for binary
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data classification. Although TWIN SVM is able to improve

both the training efficiency and generalization performance, it

has little impact on simplifying the decision function and thus

is hard to meet real-time speed when applied to large-scale

classification tasks.

We propose a new efficient SVM (eSVM) in this pa-

per for complicated large-scale classification problems. The

eSVM can reduce the computation complexity of decision

function and thus achieve faster classification speed as well

as comparable or even higher accuracy than standard SVM.

The eSVM is built upon fewer support vectors based on

the idea of minimizing the margin of misclassified samples.

Compared with the standard SVM, which is defined on the

trade-off between the least number of misclassified samples

and the maximum margin of the two separating hyperplanes,

the eSVM is defined on the trade-off between the minimum

margin of misclassified samples and the maximum margin of

the separating hyperplanes.

We then applied the eSVM to design a real-time accurate

eye localization system. Being an important initial step in

an automatic face recognition system, eye detection has a

significant impact on the performance of face recognition.

Wang et al. [8] did the experiment on FRGC 1.0 database to

evaluate the impact of eye detection error on face recognition

accuracy. It is shown that only 1% eye location error reduces

the face recognition accuracy by over 10% while about 5%

error reduces the accuracy by 50%. Phillips et al. [9] did

the experiment on FERET database and similar conclusion

was also reached. The ”partial automatic face recognition

algorithm”, in which manual eye locations are given to align

the face image, performs much better than the ”fully automatic

recognition algorithm”.

Though numerous eye detection methods have been pro-

posed, many problems still exist, especially in detection accu-

racy and efficiency under challenging image conditions [8]

[10] [11] [12]. In this paper, we present an accurate real-

time eye localization system using eSVM together with color

information and 2D Haar wavelet features. The whole eye

localization system is divided into two steps: eye candidate

selection and validation. In the candidate selection stage,

99% non-eye pixel are rejected through eye color distribution

analysis in the YCbCr color space. Only up to 1% pixels as

eye candidates enter the validation stage. The validation stage

applies 2D Haar wavelets for multi-scale eye representation,

PCA for dimensionality reduction, and eSVM for classification

to detect the center of an eye.

Experiments on some public data sets show that (i) eSVM
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Fig. 1. SVM in 2D space (Red circles represent support vectors)

significantly improves the efficiency of standard SVM without

sacrificing its accuracy and (ii) the eye localization system has

real-time speed and higher detection accuracy than some state-

of-the-art approaches.

II. EFFICIENT SUPPORT VECTOR MACHINE

In this section, we first briefly introduce the standard Sup-

port Vector Machine (SVM) and analyze the factors deciding

the complexity of decision function. Then efficient Support

Vector Machine (eSVM) is presented in the second part.

A. Standard Support Vector Machine

Given a set of training samples xi ∈ Rn and labels yi ∈
{−1, 1}, i = 1, 2, ..., l, the standard SVM builds up the optimal

separating hyperplane ωtφ(x) + b = 0 by maximizing the

geometric margin:

max
ω,b

1

ωtω
,

subject to yi(ω
tφ(xi) + b) ≥ 1

(1)

where φ(x) maps x into a higher dimensional space.

Typically, the original training set will not be linearly

separable. To address this problem, it is common to define

a soft margin by including the slack variables ξi ≥ 0 and a

regularizing parameter C > 0,

min
ω,b,ξi

1

2
ωtω + C

l
∑

i=1

ξi ,

subject to yi(ω
tφ(xi) + b) ≥ 1 − ξi ,

ξi ≥ 0, i = 1, 2, ..., l

(2)

From Eq.2, we can observe that the standard SVM is defined

on the trade-off between the least number of misclassified

samples (min
ξi

C
l

∑

i=1

ξi) and the maximum margin (min
ω,b

1

2
ωtω)

of two separating hyperplanes. Using a Lagrangian, the opti-

mization problem of Eq.2 is solved by means of its dual, a

quadratic convex programming problem:

Fig. 2. eSVM in 2D space (Red circles represent support vectors)

max
α

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjK(xi, xj)

subject to
l

∑

i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1, 2, ...l

(3)

where K(xi, xj) = φ(xi)
tφ(xj) is the kernel function.

The decision function of SVM is as follows:

f(x) = sgn(
∑

i∈SV

yiαiK(xi, x) + b) (4)

where SV is the set of support vectors. The support vectors are

defined as a subset of training samples whose corresponding

αi is not equal to zero.

B. Curse of SV’s Size

Previous research shows that the complexity of a classifica-

tion model depends on the size of parameters [13]. Simple

model can generate a fast system but has poor accuracy.

Contrarily, complex model can reach higher classification

accuracy on training data but will lead to lower efficiency and

poor generalization performance.

From Eq.4, it is observed that the complexity of SVM model

depends on the size of Support Vectors (SV), which define

on a subset of training samples whose corresponding αi is

not equal to zero. According to Karush-Kuhn-Tucker (KKT)

conditions in the optimization theory, the optimization problem

of standard SVM defined in Eq.3 should satisfy following

equation:

αi[yi(ω
tφ(x) + b) − 1 + ξi] = 0, i = 1, 2, ...l (5)

where αi 6= 0 when yi(ω
tφ(x) + b) − 1 + ξi = 0. Because

of the flexibility of the parameter ξi, the probability that

yi(ω
tφ(x)+ b)− 1+ ξi = 0 holds is very high, and thus αi is

more likely to get a nonzero value. More specifically, in Eq.5,

support vectors are those samples between and on the two

separating hyperplanes ωtφ(x) + b = −1 and ωtφ(x) + b = 1
(Fig. 1). For complicated large-scale classification problem,
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since many misclassified samples exist between these two

hyperplanes during training, the size of support vectors will

be very large and thus an overcomplex decision model will be

generated.

As we mentioned above, the primary impact of an over-

complex model is on its efficiency. The classification speed of

SVM tends to be slower than other state-of-the-art techniques

due to its complicated learning procedure. An overcomplex

SVM model will further lower its efficiency and restrict its

application to real-time applications. Another potential harm

of an overcomplex SVM model is to reduce its generalization

performance. SVM is well known for its good generalization

performance. Unlike previous techniques such as Neural Net-

work (NN) which are defined on Empirical Risk (ER), SVM

is defined on Structural Risk Theory (SRT) [14]. SRT enables

SVM to have good generalization performance by keeping a

balance between seeking the best classifier on training data and

avoiding overfitting on them during the learning procedure.

However, an overcomplex model is likely to break this balance

and increase the possibility of overfitting and thus reduce the

generalization performance.

C. Efficient Support Vector Machine

Based on the idea of minimizing the margin of misclassified

samples, efficient Support Vector Machine (eSVM) is built

upon fewer support vectors while keeping or even improving

the generalization performance of standard SVM.

Motivated by above analysis that it is the flexibility of the

parameter ξi that leads to the large size of support vectors, we

propose our eSVM by executing second optimization of Eq.2

as follows:

min
ω,b,ξ

1

2
ωtω + Cξ ,

subject to yi(ω
tφ(xi) + b) ≥ 1 , i ∈ V − MV

yi(ω
tφ(xi) + b) ≥ 1 − ξ , i ∈ MV , ξ ≥ 0

(6)

where MV is the set of the misclassified samples in standard

SVM and V is the set of all training samples. Its dual quadratic

convex programming problem is:

max
α

∑

i∈V

αi −
1

2

∑

i,j∈V

αiαjyiyjK(xi, xj)

subject to
∑

i∈V

yiαi = 0,

(

∑

i∈MV

αi

)

≤ C,

αi ≥ 0, i ∈ V

(7)

Note that instead of the flexibility of the slack variables in

Eq.2, we set these slack variables to a fixed value in Eq.6.

Now the new KKT conditions of Eq.6 become:

αi[yi(ω
tφ(x) + b) − 1] = 0, i ∈ V − MV

αi[yi(ω
tφ(x) + b) − 1 + ξ] = 0, i ∈ MV

(8)

According to Eq.8, αi 6= 0 when yi(ω
tφ(x) + b) − 1 =

0, i ∈ V − MV or yi(ω
tφ(x) + b) − 1 + ξ = 0, i ∈ MV .

The support vectors are those samples on the two separating

hyperplanes ωtφ(x) + b = −1 and ωtφ(x) + b = 1 and the

misclassified samples farthest away from the hyperplanes (Fig.

2). Therefore, the support vectors are much less than those

defined by Eq.5.

Compared with the standard SVM, which is defined on the

trade-off between the least number of misclassified samples

(min
ξi

C
l

∑

i=1

ξi) and the maximum margin (min
ω,b

1

2
ωtω) of two

separating hyperplanes, eSVM is defined on the trade-off be-

tween the minimum margin of misclassified samples (min
ξ

Cξ)

and the maximum margin (min
ω,b

1

2
ωtω) of separating hyper-

planes. For complicated classification problems, the standard

SVM builds up a complex SVM model in pursuit of the least

number of misclassified samples to some extend. According

to SRT, it will increase the risk of overfitting on the training

samples and thus reduce its generalization performance. The

eSVM pursues the minimal margin of misclassified samples

and its decision function is more concise. Therefore, eSVM

can be expected to achieve a litter bit higher classification

accuracy than standard SVM.

Training a SVM requires to solve a very large quadratic

programming (QP) optimization problem. Platt [15] presented

a fast training algorithm for SVM named Sequential Minimal

Optimization (SMO). In [16], we proposed an Improved SMO

(ISMO) algorithm to solve the optimization problem of eSVM

defined in Eq. 7. Please see [16] for details.

III. A REAL-TIME ACCURATE EYE LOCALIZATION

SYSTEM

In this section, we present a real-time accurate eye localiza-

tion system using eSVM together with color information and

2D Haar wavelet. Generally speaking, current eye detection

methods can be classified into three categories [10]: template

based methods [17], feature based methods [18] [10], and

appearance based methods [11] [12]. Feature based methods

are likely to have faster detection speed since they only focus

on the characteristic of eyes such as the shape and color,

while appearance based methods are likely to have higher

detection accuracy since statistical learning technology is

applied. The eye localization system presented here combines

the advantages of both feature and appearance based methods.

Fig. 3 illustrates the architecture of the system. First, a face is

detected using the Bayesian Discriminating Features method

(BDF) in [19] and normalized to the size of 128 × 128.
Then Geometric constraints are applied to localize the eyes,

which means eyes are only searched in the top half (within

the size of 55 × 128 in our experiment) of the detected

face. The effect of illumination variations are alleviated by

applying an illumination normalization procedure combining

of the Gamma Correction, Difference of Gaussian (DoG)

filtering, and Contrast Equalization. Then the eye detection

is achieved by two steps: the feature based eye candidate

selection and appearance based validation. The selection stage

rejects 99% of the pixels through an eye color distribution
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Fig. 3. System Architecture of our Eye Localization Method

analysis in the YCbCr color space, while only remaining 1%

of the pixels are further processed by the validation stage.

The validation step applies 2D Haar wavelet [20] for multi-

scale eye representation, PCA for dimensionality reduction,

and eSVM for classification to detect the center of the eye.

We will discuss these two stages below in detail.

A. Eye Candidate Selection

Conventional appearance based eye detection methods move

a sliding window pixel by pixel over the whole image and

each detection window is tested by a pre-trained classifier.

Suppose the size of searched eye strip is 55 × 128 (the size

used in our experiment). Totally, there are 7,040 classification

operations on each image. This is very time-consuming due

to the computation complexity of the statistical learning based

classifier. In our method, we expect to first select a small

amount of eye candidates according to the characteristic of

eyes before using classifier detecting eyes in the validation

step.

In our method, the eye candidates are chosen through an eye

color distribution analysis in the YCbCr color space. In the

YCbCr color space, the RGB components are separated into

luminance (Y), chrominance blue (Cb), and chrominance (Cr).

Previous researches show that the chrominance components of

the skin-tone and eye-tone are independent of the luminance

component. For the eye regions, especially for the pupil center,

more pixels are with higher chrominance blue (Cb) and lower

chrominance red (Cr) compared with the skin area. In addition,

like in the gray-scale image, the luminance (Y) of eye region

are much darker than other areas. In Fig. 4, we manually

collected random skin patches (4,078,800 pixels), eye regions

(145,200 pixels), and pupil centers (1,200 pixels) from 600

face images of 128× 128 to show our findings. Fig. 4 reveals

that the eye-centers, which are represented by red dots, are

clustered in the corner with higher Cb value but lower Cr and

Y values. Fig. 5 shows some eye strip examples if the Y, Cb,

and Cr channels are represented in RGB color space. We can

Fig. 4. The eye-tone distribution in the YCbCr color space. Blue dots
represent skin pixels, green the eye region pixels, and red the pupil-center
pixels.

Fig. 5. Y, Cb, and Cr channels are presented in RGB color space

find that the eye regions always have higher green values and

lower blue value, which correspond to the Cb and Cr channel

respectively. Therefore, We define a weight for each pixel in

Eq.9 and consider the first K pixels with maximum weights

as eye candidates:

Weight(i, j) =
i+2,j+2

∑

i−2,j−2

[Cb(i, j)+

(255 − Cr(i, j)) + (255 − Y (i, j))]

(9)

In our experiments, we set K = 60, which only account for
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0.85% of the whole image pixels. However, only 60 candidates

per image represent over 99% of the real eye locations. Only

less than 1% eyes are missing from the candidate set.

B. Eye Candidate Validation

After eye candidate selection stage, more than 99% eyes

are included in the candidates, but the false positive rate is

very high. The eye validation stage then utilizes the 2D Haar

wavelet features and eSVM to verify each eye candidate,

eliminate non-eye pixels, and determine the center of an eye

among them.

The Haar wavelet [21] is a natural set basis functions which

encode the differences in average intensities between different

regions in different scales. It has three kinds of representations

in two dimension space: (i) a two horizontal neighboring

rectangular regions, which computes the difference between

the sum of pixels within each of them, (ii) a two vertical

neighboring rectangular regions, which computes the differ-

ence as (i) does, and (iii) a four neighboring rectangular

regions, which computes the difference between diagonal pairs

of rectangles. In [22], an extension of 2D Haar wavelet

based on overcomplete set of basis functions is proposed for

pedestrian detection. It works not well on eye detection since

eyes don’t contain as much information as pedestrian and

thus overcomplete features would capture more noise that will

decrease the detection accuracy.

There are some other widely used features in biometrics.

Gabor wavelet is proved to be effective in face recognition

and detection [23]. It is able to capture the local structure

corresponding to spatial frequency (scale), spatial localization,

and orientation selectivity. Local Binary Patterns (LBP) [24]

is proposed and first used for face recognition in 2004. LBP

labels the pixels of an image by thresholding the 3× 3 neigh-

borhood of each pixel with the center value and considering

the result as a binary number. Then the histogram of the

labels can be used as a texture descriptor. These descriptors

are claimed to be able to capture both local and global

features. Histograms of oriented gradients (HOG) [25] is a

newly proposed descriptor for human detection. It focus on

local gradient variation and intends to capture more edge

information. Compared with these representation methods, 2D

Haar wavelet is the most suitable to capture the structure

characteristic of eyes in different scales: centered dark pupil

is surrounded by a relatively white sclera. The comparison on

detection accuracy among these features is shown in Fig. 6.

After 2D Haar wavelet feature is extracted, PCA is applied

for dimensionality reduction. PCA is known as the best data

representation in the least-square sense for classical recogni-

tion [26]. Let Y ∈ RN represents the augmented 2D Haar

wavelet features. The covariance matrix of Y is defined as

follows:

∑

Y

= ε{[Y − ε(Y )][Y − ε(Y )]t} (10)

where ε(·) is the expectation operator and
∑

Y ∈ RN×N . The

PCA of a random vector Y factorizes the covariance matrix
∑

Y into the following form:

∑

Y = ΦΛΦ with Φ = [φ1φ2...φN ],

Λ = diag{λ1, λ2, ..., λN}
(11)

where Φ ∈ RN×N is an orthogonal eigenvector matrix and

Λ ∈ RN×N a diagonal eigenvalue matrix with diagonal

elements in decreasing order (λ1 ≥ λ2 ≥ ... ≥ λN ). An
important application of PCA is dimensionality reduction:

Z = P tY (12)

where P = [φ1φ2...φm],m < N and P ∈ RN×m. In PCA, the

eigenvectors corresponding to big eigenvalues always contains

the most representing features of the original data. Therefore,

the lower dimensional vector Z ∈ Rm captures the most

expressive information of the original data Y .

Finally, eSVM presented in Section II is applied to verify

these eye candidates in the PCA feature spaces.

IV. EXPERIMENTS

In this section, we first compare the performance of eSVM

with standard SVM and one of the state-of-the-art simplified

SVMs on some widely used data sets. Then the proposed

eye localization system is evaluated on the Face Recognition

Grand Challenge (FRGC) database.

A. Performance Assessment for eSVM

We assess the performance of eSVM on six public data sets

[27]: dna, satimage, letter, and shuttle from Statlog collection;

ijcnn1 from IJCNN challenge 2001; and protein from UCI

collection. We choose these data sets because it has been tested

by another state-of-the-art simplified SVM - RSVM in [5].

This will enable us to make comparison between eSVM and

RSVM. The data sets are collected from various problems

and their size varies from small to large-scale. Table I lists the

data description. Please note that all the training and testing

data, as [5] did, is scaled into [-1, 1]. The parameter settings

are followed those in [5], which is chosen through the model

selection. The parameters of eSVM are set same with SVM

in order to show its superiority. And only the RBF kernel

K(xi, xj) = e−r‖xi−xj |
2

is considered.

TABLE I
DATASET DESCRIPTION

name #traing data #testing data #class #features

dna 2,000 1,186 3 180

satimage 4,435 2,000 6 36

letter 15,000 5,000 26 16

shuttle 43,500 14,500 7 9

ijcnn1 49,990 91,701 2 22

protein 17,766 6,621 3 357
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TABLE II
PERFORMANCE ASSESSMENT AMONG SVM, RSVM, AND ESVM (T STANDS FOR TIME IN SECOND)

Dataset
SVM RSVM eSVM

C, r #SV rate T C, r #SV rate T C, r #SV rate T

dna 24, 2−6 973 95.45 2.39 22, 2−6 372 92.33 - 24, 2−6 503 95.86 1.03

satimage 24, 20 1,611 91.3 2.50 23, 20 1,826 90 - 24, 20 299 91.7 0.58

letter 24, 22 8,931 97.78 28.93 25, 21 13,928 95.9 - 24, 22 522 97.98 1.73

shuttle 211, 23 280 99.92 1.65 211, 23 4,982 99.81 - 211, 23 96 99.95 0.81

ijcnn1 21, 21 5,200 96.14 227.68 20, 20 200 96.77 - 21, 21 82 97.02 4.60

protein 21, 2−3 17,424 68.51 589.58 21, 2−3 596 66.24 - 21, 2−3 2,866 69.15 99.38

Table II shows the comparison on the classification effi-

ciency and accuracy among SVM, RSVM, and eSVM. As

we discussed in Section II, support vectors of SVM tends

to dramatically increase when applied to complicated large-

scale problems. For simple classification problems, like ijcnn1

(49,990 training samples, 2 classes, 22 features), the size of

SV is still not large, which only accounts for 10.40% of

the training data set. However, for complicated large-scale

problems, like protein (17,766 training samples, 3 classes, 357

features), the size of SV becomes extremely large, counting

for 98.07% of the training data set. Please also note that the

complication of the classification problem also depends on

the selection of the features. Good and discriminant features

can reduce the problem’s complication while bad and noisy

features can aggravate the complication. This can be explained

why the SVM model on the small data set dna (2,000 training

samples, 3 classes, 180 features) has a large set of SVs

(accounting for 48.65% of training data set).

Table II also demonstrates that eSVM has excellent ability

to control the size of SVs than SVM and RSVM. The number

of SVs is much less than the other two in average. Although

eSVM generates more SVs than RSVM in the dna and protein

problems, it outperform RSVM in other four problems. Take

the letter problem as an example, eSVM decreases the number

of SVs from 8,931 of SVM to 522, compared with the

RSVM increasing it to 13,928. In average, eSVM reduce the

number of SVs of SVM by 87.31% and of RSVM by 80.06%

respectively. As we discussed in Section II, the size of SVs will

decide the complexity of decision function and further decide

the model classification efficiency. From table II, it is observed

that the testing time highly depends on the size of SVs. When

the size becomes larger, the computation efficiency becomes

low and the testing procedure takes long time. Since the eSVM

model is based on a smaller SV set, it can ensure the much

faster testing speed than SVM and RSVM. In average, eSVM

is 7.9 times faster than SVM. The RSVM results listed here

is from [5] and is implemented under a different environment.

Thus, we can not compare the testing time explicitly between

RSVM and eSVM.

Regarding the classification rate, table II indicates that

eSVM has a better performance than SVM and RSVM. In

[5], the author lists four different implementation of RSVM

and each implementation has a little bit different rate. The

best rate for each problem is chosen and used in table II.

The experiments on above data sets demonstrate that RSVM

reduces the classification model complexity at the expense

of accuracy. The rate of RSVM, in average, is 1.34% lower

than SVM. However, eSVM not only significantly reduces the

model complexity but also keeps or even a little bit improves

the classification rate. As shown in Table II, the average rate

of eSVM is 0.43% higher than SVM and 1.77% higher than

RSVM respectively.

B. Experiments on Eye Localization

We evaluate the effectiveness of our eye localization system

as well as further assess the performance of eSVM on the Face

Recognition Grand Challenge (FRGC) version 2 experiment 4,

which contains both controlled and uncontrolled images [28].

Note that while the faces in the controlled images have good

image resolution and illumination, the faces in the uncontrolled

images have lower image resolution and large illumination

variations. In addition, facial expression changes are in a wide

range from open eyes to closed eyes, from without glasses to

with various glasses, from black pupils to red and blue pupils,

from white skin to black skin, and from long hair to wearing

a hat. All these factors increase the difficulty of accurate eye-

center detection. In our experiments, we do the test on the

whole training data set of FRGC 2.0, which contains 12,776

images. So there are 25,552 eyes totally to be detected. In

order to train a robust eye detector, 3,000 pairs of eyes and

12,000 non-eye patches are collected as training samples from

different sources.

Fig. 6 illustrates the comparison on the performance of eye

detection among different eye representing methods (2D Haar,

HoG, Gabor, and LBP) and classifiers (SVM and eSVM).

The eSVM classifier, as shown ni Fig. 6, has comparable or

even higher detection accuracy than SVM under different eye

representation methods. If we consider the eye is localized

correctly when the Euclidean distance between the detected

point and groundtruth is within 5 pixels, Table III lists the

specific comparison on detection accuracy between SVM

and eSVM under different eye representations. The highest

detection rate is reached by using 2D Haar wavelet and eSVM

classifier, which is 94.92%. Moreover, Fig. 6 also proves that

2D Haar wavelet is the most suitable representation for eye

detection. It’s average detection accuracy through different

localization errors is higher than HoG by 1.76%, Gabor by

3.58%, and LBP by 40.25%, respectively.
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TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT FEATURES AND CLASSIFIERS

method \ Performance #SV detection time (s) detection time per image (s) Detection Rate

2D Haar + SVM 9,615 38,839 3.04 93.82%

2D Haar + eSVM 267 2,044 0.16 94.92%

HoG + SVM 4,898 19,292 1.51 92.91%

HoG + eSVM 249 1,661 0.13 91.91%

Gabor + SVM 11,086 217,959 17.06 89.41%

Gabor + eSVM 514 12,009 0.94 89.16%

LBP + SVM 11,844 38,967 3.05 32.78%

LBP + eSVM 305 1,533 0.12 32.10%

TABLE IV
COMPARISON OF EYE LOCALIZATION ERROR ON X AND Y COORDINATES (ED STANDS FOR THE EUCLIDEAN DISTANCE)

Method Database mean(x) std(x) mean(y) std(y) ED (mean)

Wang and Ji FERET 1.27 2.66 1.36 2.46 N/A1

Wang and Ji FRGC 1.0 4.99 4.58 3.17 2.69 6.40

Everingham FERET 1.29 1.28 1.04 1.29 2.04

2D Haar+eSVM FRGC 2.0 2.39 2.43 1.41 1.42 2.71

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pixel Error

D
e
te

c
ti
o
n
 R

a
te

 

 

Haar−SVM

Haar−eSVM

HoG−SVM

HoG−eSVM

Gabor−SVM

Gabor−eSVM

LBP−SVM

LBP−eSVM

Fig. 6. Performance comparison among different methods
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1The author didn’t report this result in the literature.

Regarding the efficiency, eSVM outperforms SVM under

no matter what representation method is applied. From Table

III, the size of support vectors get 97.23% reduced of SVM

under 2D Haar Wavelet, 94.92% reduced under HoG, 95.36%

reduced under Gabor, and 97.42% reduced under LBP. Be-

cause of the large size of support vectors, the computation

complexity of standard SVM is very huge and real-time

application is very hard to reach. Take the 2D Haar wavelet,

which achieves the best detection accuracy, as an example,

it takes 3.04 seconds (0.32 images per second) in average

to process each image. However, by applying eSVM, the

efficiency gets great improved and real-time speed becomes

possible. It only takes 0.16 seconds (6.25 images per second)

in average to process each image under 2D Haar wavelet,

which is 19 times faster than SVM.

In Fig. 7, the distribution of the Euclidean distance of

detected eyes compared to the ground truth is listed, which is

based on the 2D Haar wavelet + eSVM method that is proved

to be the best in both performance and efficiency. The average

Euclidean distance is about 2.71 pixels.

It is hard to make a quantitative comparison with other

methods due to the different datasets used. Table IV lists a

typical comparison, with the boosting based method of Wang

and Ji [29], who report results on 400 images of FERET

database and on 3000 images of FRGC 1.0 database, and

with the Bayesian method of Everingham and Zisserman [30],

who report results on 1000 images of FERET database. Please

note that the detection performance would decrease to some

extent when the experiments do on large-scale and complicated

data set. This is can be seen from the Wang and Ji’s report.

When the same detection method is applied to the 3000

images of FRGC 1.0 database, the performance is worse than

that on 400 images of FERET. Considering the FRGC 2.0

database we used has the huge size (12,776 images) and great
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Fig. 8. Examples of detected eyes.

compliancy (various illumination, pose and expression), our

method indicates better and reliable performance. Finally, Fig.

8 lists some examples of the detection results.

V. CONCLUSIONS

In this paper, we propose a new SVM, named eSVM.

The eSVM is defined on fewer support vectors and thus can

achieve much faster classification speed and comparable or

even higher classification accuracy. We then present a real-

time accurate eye localization system using eSVM together

with color information and 2D Haar wavelet. Experiments

on some public data sets show that (i) eSVM significantly

improves the efficiency of standard SVM without sacrificing

its accuracy and (ii) the eye localization system has real-time

speed and higher detection accuracy than some state-of-the-art

approaches.
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